摘 要 熔盐卡诺电池储能系统将火电厂与储能技术耦合,是实现机组灵活改造的有效途径。该系统可采用新能源场站弃电或者电网低谷电直接或者通过热泵循环间接加热熔盐,将电能转化为高温热能存储,而后高温熔盐和锅炉共同作为热源来驱动汽轮机发电,从而达到减少煤炭使用甚至替代锅炉的目的。为探究部件参数变化对火电厂改造的熔盐卡诺电池储能系统的效率影响规律,本工作首先在Aspen Plus平台中搭建了热泵循环、熔盐蒸发器以及典型600 MW亚临界燃煤机组等模块构成的熔盐卡诺电池储能系统热力学模型。其次,分析了热泵的循环工质、有/无回热以及部件关键参数对热泵制热效率及系统储能特性的影响规律。最后,比较了直接电加热和利用热泵循环加热熔盐的两种不同电转热形式的储能系统变工况效率。研究结果表明,有回热系统的热泵制热系数和储能系统往返效率均高于无回热系统;对于有回热系统,氩气作为热泵循环工质的回热器热负荷最低,然而氮气作为热泵循环工质时,储能系统的往返效率最高。在冷源温度67 ℃、等熵效率0.9和机械效率1.0时,储能系统额定工况的往返效率可达61.46%。此外,在额定工况下,采用热泵的储能系统相比于直接电加热的系统往返效率提高了45.16%。本研究可为火电厂改造的熔盐卡诺电池储能系统的设计和分析提供理论指导。
随着化石能源的逐步枯竭以及环境问题的日益严重,传统火力发电为主的能源供应体系正逐步过渡到以风能和太阳能等清洁能源为主的新体系。为了缓解可再生能源高比例纳入电网对电力系统的稳定运行造成的冲击,火电机组需灵活地变负荷来满足供需平衡。耦合储能技术的火电机组改造是实现机组灵活调峰的一种主要解决方案,其中,德国DLR学者提出可将火电机组改造成熔盐卡诺电池(Carnot battery)的形式引起了国内外学者的广泛关注。
卡诺电池,又名热泵储电技术,由电转热(P2H)、储电(TES)和热转电(H2P)三部分组成。面向火电厂改造的熔盐卡诺电池储能系统,即保留原有的发电循环作为热转电部分,新增电加热/逆布雷顿循环等作为电转热部分,同时引入低成本的熔盐储热作为大规模储电部分。因改造的熔盐卡诺电池储能系统利用了现有的燃煤电厂,故减少了工程的前期投资成本,这种极具潜力的储能系统有望成为大规模电力存储的新型储能系统,促进电力系统对可再生能源发电的规模化消纳。
国内外对熔盐卡诺电池的研究主要涉及不同集成系统的构建及效率分析、系统经济可行性和调峰性能等方面。Vinnemeier等研究了以环境为热源,有回热热泵不同循环工质时的热泵性能,分析了热泵集成不同类型热电厂的系统效率以及热泵与电加热器串联的系统性能。Geyer等研究了电加热熔盐改造即将退役的煤电厂,分析了不同充放电时间、不同储热容量的改造成本和系统往返效率。Mahdi等集成了布雷顿循环热泵、聚光太阳能发电和光伏发电(PV-CSP)混合发电厂,分析比较了不同循环工质对系统的影响,最后分析了不同集成模式下的热泵性能和系统往返效率。Wang等将熔融盐蓄热系统集成到燃煤电厂,提出抽取主蒸汽或再热蒸汽储存热量和循环蒸汽返回低压汽轮机或冷凝器的四种集成模式,并分析了四种集成模式的调峰性能。赫广迅等基于300 MW等级亚临界参数燃煤电站向储能电站转型的应用场景,搭建了超高温热泵及熔盐储换热系统,并系统性研究了循环压力区间和低温热源温度对超高温热泵制热系数的影响。
上述文献表明,火电厂改造熔盐卡诺电池储能系统的研究主要集中于不同储能系统效率比较、系统成本分析和调峰性能三个方面,而对热泵参数变化下的系统性能分析不深入且不全面。对此,本工作在Aspen Plus平台中搭建了含电转热、储电、热转电三个子系统的熔盐卡诺电池。在验证模型之后,着重分析循环工质、热源入口温度、压缩机/膨胀机的等熵效率和机械效率以及冷源入口温度等热泵参数对热泵性能系数(COP)的影响和熔盐卡诺电池储能系统往返效率(RTE)的影响,最后分析并比较了直接电加热和利用热泵循环加热熔盐两种不同电转热形式的储能系统变工况效率。本研究可为面向火电厂改造的熔盐卡诺电池储能系统的设计和分析提供理论依据。
如图1所示,该系统主要由充电、储电、放电三部分组成。充电部分所需要的电力可来源于太阳能/风能等新能源场站的弃电或电网的低谷电,通过由压缩机C1、膨胀机T1、冷源换热器Hc、回热器Hr和热源换热器Hh组成的热泵循环将电能高效地转化为工质的热能;储电部分中低温熔盐储热工质经过Hh被加热成高温熔盐,并存储在高温熔盐罐HT中,实现规模化储电;电转热部分则由典型的600 MW亚临界朗肯循环火电厂构成。详细的系统储/释电流程及原理介绍如下。
(1)充电过程:电力驱动热泵循环压缩机C1将工质压缩至高温高压状态,高温高压工质在热源换热器Hh和储电介质换热,工质温度降低,将工质热量传递给储电介质。之后中温循环工质经过回热器Hr和冷源换热器Hc出口的低温循环工质换热,温度进一步降低,接着低温高压的循环工质经过膨胀机T1做功变为低温低压状态。随后,循环工质进入冷源换热器Hc和冷源换热,温度升高,而后进入回热器Hr进一步升温,最后中温低压的工质进入压缩机C1进入下一次热力循环。经过上述热泵循环,将电能转化成储电介质的热能,实现电转热。
(2)放电过程:高温熔盐罐HT中泵出的高温熔盐分为两股,其中一股高温熔盐进入过热器SH和来自蒸发器EV的蒸汽进行换热,使得蒸汽达到所需的主蒸汽温度,此过程蒸汽温度升高,熔盐温度降低。随后高温高压的蒸汽进入高压缸HPT,冲击高压缸HPT内的转子叶片,推动轴承旋转,在高压缸HPT中将蒸汽的热能转换为转子的机械能;另一股高温熔盐进入再热器RH和高压缸HPT部分抽汽进行换热,使得蒸汽达到所需的再热蒸汽温度。此过程蒸汽温度升高,熔盐温度降低,再热后的部分高温抽汽进入中压缸IPT。随后在中压缸IPT和低压缸LPT中将蒸汽的热能转换为转子的机械能。换热后的两股中温熔盐合并为一股进入蒸发器EV和预热器PH进一步与低温蒸汽换热,温度较低的低温熔盐回到低温熔盐罐TH中进行下一次热力循环。最后,通过发电机将机械能转化为电能。上述放电过程中,高温熔盐用来驱动朗肯循环发电,实现热转电。
需要补充说明的是,实际应用中,充电过程也可以通过直接电加热熔盐来完成,本工作后续会具体分析变工况下的电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率的区别。此外,假如电站作为电力系统基础负荷,锅炉持续运行时,当电网处于谷电且锅炉不能适时地变负荷来满足供需平衡时,系统可通过适量抽取汽轮机中的蒸汽,并将高温蒸汽热量用来加热熔盐储电工质,减小汽轮机的输出功率,以达到调峰和储热的作用。而当电网处于峰电且锅炉负荷不能实时地变负荷来满足供需平衡时,可通过释放高温储罐中的热盐与锅炉共同作用,来增加汽轮机的输出功率。由于本工作重点讨论热泵循环的关键参数影响,因此下述分析中熔盐卡诺电池储能系统的锅炉均无负载,不参加储能过程。
初始循环工质为氩气,无回热的热泵循环压比为12.4,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98;有回热的热泵循环压比为3,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98。压缩机出口温度均为589 ℃,冷源入口温度均为27 ℃,熔盐入口和出口温度分别为290 ℃和560 ℃。
本工作在Aspen Plus平台中分别搭建了热泵、熔盐蒸发器和燃煤电厂等子系统,模拟获得系统的热力参数及性能。对于发电部分,研究对象是国产亚临界600 MW机组,型号为N600-16.7/537/537,机组回热采用“三高、四低、一除氧”。对于汽轮机部分,流程组分选择Water工质,物性方法选择STEAM-TA。为验证Aspen软件模拟火电厂热力性能的准确性,对三种典型工况(100%额定工况、75%额定工况和30%额定工况)进行了模拟,将三个工况下汽轮机的电功率、热耗率及热效率等热力指标与设计值进行了对比,见表1。结果表明,模拟值与电厂的汽轮机设计值具有高度的一致性,不同工况下的电功率、热耗率和热效率模拟值与设计值误差均低于0.1%。上述对比表明,本工作模型具有较高的准确性。
对于熔盐蒸发器系统,换热器用HeatX模块进行搭建,换热器熔盐侧物性选择WILSON,汽水侧选择STEAM-TA。熔盐蒸发器中熔盐侧和汽水侧的温度和流量等参数见表2。此模型和文献[21]关系吻合。
对于热泵系统,循环工质选用氩气、储热介质选择太阳盐(60% NaNO3-40% KNO3),另一侧介质选用甲醇的无回热的模型与文献[22]进行对比验证,结果见表3。结果表明,热泵模型具有较高的准确性。
由于热泵的设计对充电和整个储能系统的往返效率起着决定性的作用。因此,本节分析有回热和无回热的热泵构型及热泵参数对热泵制热系数和整个储能系统效率的影响规律。本工作首先分析不同热泵循环工质的影响并确定合适的循环工质;而后分析热泵热源入口温度的影响,确定熔盐进出口温度,进而确定热泵制热量。在此基础上分析热泵循环中压缩机/膨胀机的等熵效率/机械效率、冷源入口温度、压缩机入口温度和热泵工质流量的影响规律。为了控制变量的原则,在各变量的参数分析过程中,系统其他固定变量的取值汇总如表4所示。
由于循环工质的物理性质不同,工质的选取会直接影响热泵的制热系数和整个储能系统效率。本研究选取了氩气、氮气和二氧化碳等3种代表性气体作为热泵系统中的循环工质。计算过程中,系统有回热且锅炉无负载,压缩机的压比为3,压缩机出口温度为589 ℃,冷源入口温度均为27 ℃,热源换热器Hh熔盐侧进出口温度分别为290 ℃和560 ℃。表5给出了3种热泵循环的工质流量、COP、回热器热负荷Qr及储能系统RTE的模拟结果。结果表明,氩气、氮气和二氧化碳作为循环工质时,热泵COP分别为1.299、1.306和1.296,储能系统RTE分别为56.73%、57.03%和56.60%,结果区别并不明显。
然而,三者的压缩机入口温度分别为261.5 ℃、350 ℃和432 ℃,回热器热负荷Qr分别为883.02 MW、1508.07 MW和2552.38 MW。氮气可以看作双原子理想气体,比热容比为1.40;氩气作为单原子气体,比热容比为1.66。根据式(7)可得,当冷股入口温度一定时,出口温度越低,焓值越低,热负荷越低,所以氩气作为热泵循环工质时回热器热负荷Qr最低。在参考文献[10]及本工作研究结果。